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7.1 Introduction 

Most of the materials that are studied in the field of 'hard' condensed matter 
physics-metals, semiconductors, and ceramics-are crystalline; the atoms or 
molecules of which they are composed are arranged with near-perfect long· 
ranged order over distances that are many orders of magnitude greater than 
the distance between molecules. Single crystals of metals or semiconducto~ 

of macroscopic size are not uncommon, but even where these materials are 
described as 'polycrystalline' the fraction of the molecules that does not partake 
in the long-ranged order is very small (though, of course, this small fraction of 
atoms associated with grain boundaries and defects such as dislocations may 
have an effect on bulk properties out of proportion to their number). 

The situation in soft condensed matter is rather different. Crystallinity­
involving full long-ranged positional order-is important in soft matter, but 
in most soft matter systems the degree of molecular ordering falls somewhere 
between the full positional order of a single crystal and the complete positional 
disorder of a liquid or a glass. In fact, there are two distinctly different types of 
intermediate order in soft matter systems: 

1.	 liquid crystallinity. These are equilibrium phases in which molecules 
are arranged with a degree of order intermediate between the complete 
disorder of a liquid and the long-ranged, three-dimensional order of 
a crystal. 

2.	 Partial crystallinity. This is a non-equilibrium state of matter in which 
the system is prevented from reaching its equilibrium state of full long· 
ranged order for kinetic or other reasons, and in which microscopic 
regions of crystalline order coexist with disordered regions, often in a 
complex hierarchical structure. 

Liquid crystalline phases are found in 

•	 certain organic compounds with highly anisotropic molecular shapes­
these are the materials used in liquid crystalline displays; 

•	 polymers composed of units having a high degree of rigidity, either in 
the backbone or attached to the backbone as side chains; 

•	 polymers or molecular aggregates which form rigid rod-like structures 
in solution. 
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Partial crystallinity is typical of many flexible polymers, such as polyethylene 
or poly(ethylene terephthalate). 

In this chapter we discuss liquid crystallinity, and move on to consider partial 
crystallinity in polymers in Chapter 8. 

7.2 Introduction to liquid crystal phases. 

Acrystal has long-ranged, three-dimensional, positional order, while a liquid 
has neither positional order nor orientational order. Liquid crystalline phases 
possess order intermediate between these two extremes. The most disordered 
type of liquid crystalline phase is the nematic phase, which has no positional 
order, but in which the molecules are, on average, oriented about a particular 
direction, called the director. The transition between the isotropic phase and 
the nematic phase is sketched in Fig. 7.1. The absence of positional order in a 
nematic phase means that if one plotted the centres of mass of the molecules 
the arrangement would be indistinguishable from an isotropic liquid; the only 
ordering is in the orientation of the molecules, and even this ordering is, as 
sketched, not perfect. This point will emerge more clearly when we consider 
statistical mechanical theories of the transition from an isotropic to a nematic 
liquid, in the next section. 

A variant of the nematic phase occurs in systems where the system is 
composed of molecules which are chiral; that is, in which the molecule differs 
from its own mirror image. In these systems there may be a slight tendency 
for neighbouring molecules to align at a slight angle to one another. This weak 
tendency leads the director to form a helix in space, with a well-defined pitch 
which is much longer than the size of a single molecule. These phases are 
called chiral nematics, or perhaps more commonly cholesterics. In many cases 
the pitch of the helix is of the same order as the wavelength of light, and so 
these materials can display striking optical effects. 

There are still more phases that are intermediate in order between nematics 
and crystals. In a smectic phase, the molecules arrange themselves in sheets. 
Within each layer, the molecules are aligned, but have no positional order. 
Thus in going from a nematic to a smectic phase, we go from a situation of no 
positional order to long-range positional order in one dimension only (Fig. 7.2). 
Two common subclasses of smectic ordering are the smectic A phase, in which 
the director is parallel to the layer normal, and the smectic C phase, in which 

Increasingly ordered 

Fig. 7.1 A sketch of the transition between the 
isotropic liquid phase. in which there is nei­
ther positional nor orientational order, and a Isotropic Nematic liquid 
nematic phase, in which there is orientational 

liquid crystal order, but still no positional order. 
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•Increasingly ordered 

Fig. 7.2 A sketch of the transition between the 
nematic phase, in which there is orientational 
order but no positional order, and a smectic 
A phase, in which there are orientational 
order and long-ranged positional order in one 
dimension. 

Fig. 7.3 A sketch of a columnar phase, in 
which disk-shaped molecules are arranged 
with orientational order and long-ranged posi­
tional order in two dimensions. Within each 
column there is no long-ranged positional 
order. 
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Table 7.1 Degrees of order in liquid crystalline phases. 

Phase Positional order Orientational order 

Liquid None None 
Nematic None Yes 
Smectic One-dimensional Yes 
Columnar Two-dimensional Yes 
Crystalline Three-dimensional Yes 

the director and the layer normal make an angle. Thus a smectic C phase is 
made up of layers of tilted molecules. 

Finally, it is possible to have a phase which has positional order in two 
dimensions as well as orientational order. This kind of phase is found in 
molecules that are disk-like, rather than rod-like; in a columnar (or discotic) 
phase such molecules stack into long columns. There are a number of different 
columnar phases in which there are different degrees of long-ranged order in the 
arrangement of the columns. One such phase is illustrated in Fig. 7.3. Within 
each column there is no long-ranged order in the position of the molecules, 
but the columns arrange themselves into a regular two-dimensional hexagonal 
lattice. 

These different levels of positional and orientational order are summarised 
in Table 7.1. 
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7.3 The nematic/isotropic transition 

The simplest and least ordered liquid crystal phase is the nematic phase, in 
which there is no positional order, but in which there is long-ranged order of 
Ihe direction of the molecules. In going from an isotropic state, in which both 
position and orientation are random, to a nematic state, in which position is 
random but there is a preferred orientation, there must be a reduction in the 
orientational entropy of the system. So in order for the nematic state to have 
alower free energy than the isotropic state, there must be another term in the 
free energy which favours orientation. Then, as the temperature changes, the 
relative importance of the two terms changes, leading to a phase transition. 

How can we describe the state of orientational order of a molecule in a 
quantitative way? For a rod-like molecule we can introduce a single preferred 
direction, the director, and we introduce an orientation function f «()); f (()) dQ 
is the fraction of molecules in a solid angle dQ which are oriented at an angle of 
9to the director. For a completely randomly oriented molecule, there is an equal 
chance that th.>JU0lecule points anywhere in a solid angle of 47T, and f (()) is 
constan~6fa more ordered system the function becomes more peaked around 
!he angles 0 and 7T, as shown in Fig. 7.4. In all known nematics, the directions 
OaI)d+rr are identical, so f«()) = f(rr - ()). 
;the distribution function contains all the information about the state of order 

in the material, but it would be convenient to represent this state of order not 
as a function but as a simple number-an order parameter-which took the 
value 0 for complete disorder, and I for complete order. One might think of 
taking the average of cos (), but this is zero because f(()) = f(rr - ()). Instead 
we must take another average: i (3 cos2 () - I) has the right properties. Thus 
we define the order parameter S by 

2I f 1S = 2"(3cos2 () -I} = 2"(3 cos () -1)f«())dQ. (7.1) 
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Fig. 7.4 The distribution function fee) for a nematic phase with various degrees of order. The order 
parameter S takes the value 0.82, 0.71, and 0.44 for the solid, dashed, and dotted lines respectively. 
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Why should a liquid adopt a nematic phase? In going from an isotropic state 
to a state of orientational order, there must be a loss of the entropy associated 
with the freedom of a molecule to be oriented in any arbitrary direction. If 
the nematic phase is to be at equilibrium, the positive contribution to the free 
energy arising from this loss of orientational entropy must be outweighed by 
some other factor that causes the free energy to be lowered when the molecules 
are aligned. This is likely to occur in melts of rod-like objects for two reasons: 

CI) favourable attractive interactions arising from van der Waals forces 
between the molecules will be maximised when they are aligned; 

(2) it is easier to pack rod-like molecules when they are aligned. 

The first factor is perhaps most important for melts of relatively small 
. molecules which form nematic phases; the second factor is the major factor 
underlying the transitions that occur as a function of concentration for very 
long rigid molecules and supramolecular assemblies. In both cases, simple 
statistical mechanical theories can be formulated on the basis of these ideas. 
These theories, which yield predictions about the nature of the transition 
between the isotropic and nematic states, are both mean field theories, and 
as such are similar in spirit to theories introduced elsewhere in this book to 
describe other phase transitions. 

The starting point for both theories is to write down an expression for the 
entropy lost when molecules become oriented. We can write the contribution to 
the entropy of a molecule due to its orientational freedom using the Boltzmann 
formula as 

Sorient = -kB ! fce) In fce) dQ. (7.2) 

In the isotropic state, f ce) = 1/4JT, so the change in entropy per molecule 
on going from the isotropic state to an ordered state is given by 

f...S = -kB ! fce) In[4JTfCe)) dQ. (7.3) 

In the first theory we consider, which is known as the Maier-Saupe theory, we 
make the phenomenological assumption that the energetic interaction between 
molecules is simply a quadratic function of the order parameter, so we write 
the total free energy change per molecule on going from the isotropic to the 
nematic state as 

f...F = -u§ /2 + kBT ! fce) In[4JTfCe)] dQ, (7.4) 

where u is a parameter that expresses the strength of the favourable interaction 
between two neighbouring molecules. Of course, S is defined in terms of the 
distribution function fce). What we now need to do is find the function /(8) 
which minimises the free energy. 

We do this in two stages. Firstly, for a given value of the order parameter S, 
we find the most probable distribution function f ce) by maximising the entropy 
associated with fce) subject to the constraint of a fixed value of S. From this 
most probable distribution function we can calculate the entropy. In this way 
we can find the orientational entropy as a function of the order parameter. 
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Thus we need to find the function f(8) that gives a stationary value of 
the integral J f(8) In f(8) sin 8 d8 subject to the constraint that the integral 
J!(3cos2 8 - l)f(8) sin 8 d8 = S is a constant. The Euler-Lagrange equation 
resulting from this problem in the calculus of variations is 

3A 2 A 
In f + 2 cos 8 + I - "2 = 0, (7.5) 

which has the solution 

f(8) = exp(3 Acos82
), (7.6) 

where Ais the Lagrange multiplier that sets the value of the order parameter S. 
Now, for a given value of A, and thus a given value of S, we can evaluate the 
entropy using eqn 7.3. The resulting curve showing the change in orientational 
entropy per molecule ti. Sorient on going to an oriented state with order parameter 
Sis shown in Fig. 7.5. 

We can now plot the free energy as predicted by eqn 7.4 as a function of 
order parameter for various values of u/ kB T. This is shown in Fig. 7.6. For 
relatively small values of u/ kB T, the minimum free energy is found for a 
value of the order parameter of zero; here the free energy is dominated by the 
orientational entropy term, and the equilibrium state is isotropic. But as the 
coupling parameter is increased a minimum of the free energy is found for 
anon-zero value of S: the equilibrium phase is nematic. The critical value of 
wlkBT for the transition is around 4.55. 

By calculating the value of the order parameter S as a function of u / kB T 
we can investigate the character of the transition. This is shown in Fig. 7.7; at a 
value of u/ kB T = 4.55 there is a discontinuous change of the order parameter 
fromS =0 to S = 0.44. This is the nematic-isotropic phase transition; because 
it is a discontinuous change it is a first-order phase transition. However, as the 
minimum in free energy at the transition is rather shallow, fluctuations at the 
lransition will be important. The transition should therefore be considered to 
be only weakly first order, and the change in degree of order at the transition is 
usually not very great. 

0.2 0.4 0.6 0.8 

Order parameter S 

The nematic/isotropic transition 109 

Fig. 7.S The change in orientational entropy 
per molecule on going from an isotropic state 
to an ordered state as a function of the order 
parameter S. 
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Fig. 7.6 The free energy as a function of the order parameter 5 for various values of the coupling 
parameter u/ kBT, as given by the Maier-5aupe theory (eqn 7.4). 
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Fig. 7.7 The order parameter 5 as a function of the coupling parameter u / kB T, as given by the 
Maier-Saupe theory. There is a weak first-order phase transition at u/ kB T = 4.55. 

In order to compare the predictions of the Maier-Saupe theory with 
experiment we would need to have some theory about the way in which the 
coupling parameter u varied with temperature. The simplest assumption is that 
u is independent of temperature; this would be the case if the coupling arose 
entirely from van der Waals forces. This turns out to be quite a reasonable 
first approxi"?-ation for small-molecule liquid crystals. Figure 7.8 compares 
experimentally measured ordered parameters for the molecule p-azoxyanisole 
(PAA) with the prediction of Maier-Saupe theory assuming that u takes the 
temperature-independent value that reproduces the experimentally observed 
transition temperature (i.e. this is a one-parameter fit). There is quite good 
qualitative agreement. While the theory captures the relatively small degree of 
order at the transition and gives a good account of the development of order 
with decreasing temperature, there are clearly systematic deviations from the 
predictions of theory, particularly close to the transition. 
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Fig.7.8 The order parameter S as a function of temperature for p-azoxyanisole (PAA), as measured 
by refractive indices (circles, from S. Chandrasekhar and N. V. Madhusudana, Appl. Spectrosc. Rev., 
6,189 (1972» and diamagnetic anisotropy (squares, from H. Gasparoux, B. Regaya, and J. Prost, 
C.R.Acad. Sci., 272B, 1168 (1971 ». The solid line is the prediction ofMaier-Saupe theory assuming 
u is independent of temperature and takes a value which reproduces the experimental transition 
temperature. 

There are a number of reasons why there are discrepancies between the 
experimental data and the predictions of Maier-Saupe theory. Two such 
possible factors are: 

1.	 Intrinsic temperature dependence of u. This could arise, for example, 
because the excluded volume interaction is significant. 

2.	 Neglect of fluctuations. The Maier-Saupe theory is a mean field theory, 
and like all such theories it neglects the effects of fluctuations in the order 
parameter. These are likely to become important close to the transition 
point. 

7.4	 Distortions and topological defects in 
liquid crystals 

7.4.1	 Generalised rigidity and the elastic constants of a 
nematic liquid crystal 

Why is it that when one pushes the end of a lever or a beam, the force applied 
is transmitted from this end to the other? We are so used to the idea that solids 
are rigid that we forget that the property of rigidity is rather mysterious. After all, 
we now know that a solid beam is mostly empty space, with atoms or molecules 
locked into their positions by a subtle balance of forces. It is not just the strength 
of the interatomic interactions that allows macroscopic forces to be transmitted 
over macroscopic distances. After all, the density of a solid is usually very 
similar to the density of its melt, and the total interaction energies in the two 
situations are very similar, yet the difference in behaviour is qualitative: solids 
are rigid, and liquids are not. The difference is in the long-ranged order of the 
solid; if one moves the position of an atom at one end of a rod, an atom at 
the other end somehow knows it has to try and move in order to maintain the 
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Fig. 7.9 Deformations of a nematic liquid 
crystal. The shear defonnation (middle) does 
not perturb the long-ranged orientational 
order, and thus is not opposed by any increase 
in elastic energy. The splay defonnation (bot­
tom) does perturb the long-ranged order, and 
is opposed by an increase in elastic energy. 

absolute precision of the crystalline order. Thus whenever one has long-ranged 
order of any kind, one has some kind of rigidity which ensures that the system 
does its best to maintain its long-ranged order when a part of it is perturbed, 

In a solid, this rigidity is described by the theory of elasticity. If we apply 
a stress to a crystal it will deform in response, but this deformation leads toa 
perturbation of its long-ranged order. This deformation leads to an increase in 
the energy of the solid proportional to the square of the size of the deformation, 
as long as the deformation is relatively small (Hooke's law), and if we release 
the stress the crystal will relax back to its original shape. This elastic behaviour 
is in contrast to the behaviour of a liquid, which shows no rigidity; if we apply 
a stress the liquid flows. 

In a liquid crystal if an applied stress leads to a deformation that perturbs 
any long-ranged order that the system possesses, then the deformation will be 
opposed by an increase in elastic energy. On the other hand, if the applied stress 
leads to a deformation that does not perturb the long-ranged order, then there 
will be no increase in elastic energy and the material will respond by flow, 
Thus the essence of the mechanical response of a liquid crystal is that it has 
an elastic response to some types of deformation, and a liquid-like response to 
others. This is illustrated for a nematic liquid crystal in Fig. 7.9. This shows 
that a nematic liquid crystal will flow like a liquid in response to a simple shear 
stress, because the resulting deformation leaves the long-ranged orientational 
order unchanged. On the other hand, more complicated types of deformation, 
such as the splay deformation illustrated, do lead to an increase in elastic energy. 
We can define elastic constants for this type of deformation. 

In the continuum limit, we can characterise a nematic liquid crystal in a 
state of deformation by the vector field nCr) giving the director at every point 
r. In analogy to Hooke's law, we expect the elastic energy to be proportionalto 
terms in the square of space derivatives of nCr). Formally, we can enumerate 
the space derivatives of nCr), which form a second-rank tensor; by exploiting 
symmetry properties one can show that there are only three independent elastic 
constants (de Gennes and Prost 1993). We shall merely state the result, and then 
discuss the physical significance of the terms. 

The elastic energy of distortion per unit volume of a nematic liquid crystal, 
Fd, can be written 

1 2 1 2 1 2
Fd = -KieV· n) + -K2(n· V x n) + -K3((n· V)· n), (7.7)

2 2 2 

where KI, K2, and K3 are the three elastic constants. These three constants 
correspond to three fundamental types of deformation in nematic liquid 
crystals: splay, twist, and bend. These are illustrated in Fig. 7.10. 

In practice, we find that values for the elastic constants in typical small· 
molecule liq\lid crystals are of order 10- 12 N. All three constants are of 
the same order of magnitude, though the bending constant K 3 is generally 
somewhat larger than the other two. 

7.4.2 Boundary effects 

In discussing the elastic constants of nematic liquid crystals, we glossed over 
the important practical question of how it is that one can impose a distortionona 
nematic liquid crystal. It turns out that an easy and practically important method 
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is to exploit the property that many surfaces have of imposing a preferential 
state of ordering on the nematic liquid crystal. 

In fact, virtually any surface will impose some sort of ordering on the director 
of an adjacent liquid crystal. There are two important cases: 

1.	 Homeotropic-alignment perpendicular to the surface. This can be 
achieved by arranging for the surface to be coated by a surfactant 
molecule. 

2.	 Homogeneous-alignment parallel to the surface. This is the more usual 
case. For a free surface any direction in the plane of the surface may be 
allowed, while for a solid substrate a particular direction in the plane may 
be imposed by the crystalline structure of the surface. A direction may also 
be imposed simply by rubbing a glass or plastic surface. The mechanism 
by which this rubbing process works is still a little obscure. In the case 
of the most technologically important process, in which polymers of the 
polyimide family are rubbed with a velvet cloth, it seems that the rubbing 
causes an alignment of the polymer chains. The molecules of the liquid 
crystal then tend to be aligned with the chain direction. 

The important general point to remember about these effects is that the 
sensitivity to alignment at the boundary is a consequence of the broken sym­
metry of the nematic phase. In the bulk, the energy of a nematic monodomain 
is independent of the orientation of the director. Thus the smallest perturbation 
that can change the relative energies of the different orientations will be 
sufficient to impose this preference on the material. 

7.4.3	 Disclinations, dislocations, and other 
topological defects 

Up to this point, we have assumed that the director in a nematic phase always 
varies through space in a smooth way. In fact, experimental samples of liquid 
crystals will often contain points or lines where the orientation of the sample 
changes discontinuously. These topological defects are known as disclinations. 

Two important types of disclination are illustrated in Fig. 7.11. Here the 
local directions of the director are drawn in the plane perpendicular to 
the disclination line. One can define the strength of the disclination by a 
construction illustrated in this diagram. If one draws a loop round the defect 
core, and one goes round the loop drawing an arrow in the direction of the 
local director, in disclination (a) the arrow rotates ]'[ radians in the same sense 
as the direction of traverse of the loop. This disclination has strength s = +~. 
In disclination (b) the rotation is also ]'[ radians, but the sense of rotation 
is opposite to that of the traverse of the loop; the discIination has strength 

s= -!. 
Disclinations should not be present in a macroscopic sample of a liquid 

crystal at equilibrium, because they lead to an increase in the free energy 
proportional to the length of disclination line present. The origin of this energy 
is two-fold: there is a certain elastic energy associated with the long-ranged 
distortion of the director field, while right at the core of the discIination there is 
an increase in energy associated with the complete loss of orientational order 
there. Accurate calculation of the disclination energy is complex, particularly 
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Fig. 7.10 The three fundamental deforma­
tions of a nematic liquid crystal. (a) Splay, 
(V . n) i= O. (b) Twist, V x n parallel to n. 
(c) Bend, V x n perpendicular to n. 

(a) 

(b) 

Fig. 7.11 Disclinations in a nematic liquid 
crystal. The disclination in (a) has strength 
s = +i. the disclination in (b) has strength 

s=-i· 

x 
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if one goes beyond an approximation in which the three elastic constants, 
K), K2, and K3, are treated as equal. In this approximation, if we can write 
K = K) = K2 = K3, then we can show that the energy E of length L of 
disclination is given by 

E 2'L=nKs /,	 (7.8) 

where / is a factor which varies only logarithmically with quantities such as 
the size of the disclination core and the average separation of disclinations. An 
energy per unit length corresponds to a line tension; thus we can consider a 
disclination in some respects as behaving like a string under tension. 

Disclinations correspond to defects in the state of orientational order. If 
we have a liquid crystal that has some degree of translational order, such as 
a smectic one, then we can expect also defects in translational order. Such 
defects, which are familiar from crystalline solids, are known as dislocations. 

7.5	 The electrical and magnetic properties of 
liquid crystals 

The anisotropic nature of liquid crystal phases manifests itself in particularly 
striking ways in regard to their interaction with electromagnetic fields. This is 
the basis not only of the very striking optical effects that are characteristic of 
liquid crystal phases, but also of their crucial role in display technologies. Our 
discussion will mostly be confined to effects in nematics, which are by far the 
most important systems for practical applications. 

Most of the molecules that form nematic phases have a permanent dipole, 
but it is found that in the absence of an applied field there is an equal probability 
that the dipole points in either direction-nematics are never ferroelectric. When 
a nematic phase is put in an electric field E the field induces a polarisation 
P which is given, in an isotropic system, by P = (E - I)EOE, where E is 
the dielectric constant. In a nematic liquid crystal, the degree to which the 
material can be polarised depends on whether the field is applied parallel or 
perpendicular to the director. 

This is illustrated in Fig. 7.12, which sketches the response to an applied 
field of a nematic liquid crystal in which the molecules have a dipole parallel to 
their long axis. Much more polarisation can be induced when the applied field 
is in the same direction as the director. The consequence is that the dielectric 
coefficient parallel to the director q is larger than the dielectric coefficient 
perpendicular to the director E.L. The situation is reversed if the dipole moment 
lies perpendic~lar to the long axis of the molecule; then we find Ell < E.L. 

The consequence of this is that electric fields are able to align nematic liquid 
crystals rather efficiently. In the case of a parallel dipole, if the director adjus~ 

to be parallel to the applied field, the electric field within the material is reduced 
by the polarisation effect and as a result the total energy of the system is 
reduced. For a field applied in some general direction, we can write the energy 
in terms of the displacement D. This is given by 

D = E.LE + (Ell - E.L)(n . E)n,	 (7.9) 
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so we can write the energy per unit volume associated with the field, Fel, as 

I f ~ 2 ~ 2Fel=-- D·dE=--E --(n·E), (7.10)
4n 8n 8n 

where Ea = Ell - El.. and the director is along the unit vector n. Thus for 
dipoles parallel to the long axis Ea is positive and the energy is reduced when 
the nematic liquid crystal aligns along the field. 

The response of a nematic liquid crystal to a magnetic field is similarly 
anisotropic. Most liquid-crystal-forming molecules are diamagnetic; an app­
lied magnetic field H causes a molecular current which produces a magnetic 
field opposing the applied field. The coefficient relating the induced magneti­
sation M to the field H is the susceptibility X = M / H. The susceptibility takes 
different values according to whether the field is applied parallel to the director 
(XII) or perpendicular to the director (Xl..). Usually the difference between the 
two susceptibilities, Xa = XII - Xl.., is positive; the director tends to line up with 
the direction of the magnetic field. Entirely analogously to the electrical case, 
we can write down the energy per unit volume associated with the magnetic 
field, Fmag, as 

Fig. 7.12 Dielectric anisotropy in a nematic 
liquid crystal, in which there is a permanent 
electric dipole parallel to the long axis of 
the molecule. In the absence of field (left) 
there is no net dipole moment. If the field is 
applied parallel to the director (top right), it 
is relatively easy to acquire a large induced 
dipole, while if the field is perpendicular 
to the director (bottom right) the degree of 
polarisation is smaller. Thus the dielectric 
coefficient parallel to the director E II is larger 
than the dielectric coefficient perpendicular to 
the director E1-. 

f I 2 I 2
Fmag =- M.dH=-"2XIIH -"2 Xa(n.H), (7.11) 

where the director is along the unit vector n. 
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7.6	 The Frederiks transition and 
liquid crystal displays 

We have seen that the alignment of liquid crystals is highly sensitive to 
external fields; these fields include electric and magnetic fields in the bulk, 
and the effects of surfaces in imposing alignment. There is a class of inter· 
esting transition effects that occur when two antagonistic aligning influences 
compete-these are known as Frederiks transitions. 

Perhaps the simplest of these transitions occurs when one has a thin film of 
a nematic liquid crystal sandwiched between two plates. If these plates impose 
a strong parallel alignment effect on the liquid crystals then the liquid crystal 
will form a single domain. Let us now impose a field (either electric or magnetic) 
perpendicular to the plates that has a tendency to align the director in that 
direction. The surface constraint forces the director to lie parallel to the plates 
at the edge of the cell, while the field tends to impose a perpendicular orientation 
towards the centre. The only way both can be satisfied is if there is a distortion 
of the director field that will cost a splay energy. It is this splay energy that 
means that the cell will only change from one configuration to the other when 
a certain critical field has been applied. 

To see this we can carry out a simple linear stability analysis. Let us suppose 
that the unperturbed director is no, and that towards the centre of the cell the 
director is slightly perturbed and lies in the direction no + 8n(z), where 8n(z) 
is a small vector perpendicular to the plates. We can now write the total free 
energy per unit volume in terms of an elastic contribution and a contribution to 
the field. This has the form 

Ftotal =	 Felastic + Ftield 

1 (a8n(z))2 2
2Ea E= -Kl -- - --8n(z) (7.12)

2	 az 8TC 

where K I is the splay elastic modulus and Ea is the difference in dielectric 
coefficients perpendicular and parallel to the field. At the boundaries z =0and 
z = d (where d is the thickness of the cell), 8n = 0 because of the alignment 
properties of the surface, which we assume to be strong. So consider a distortion 
of the form 

8n(z) =	 8n sin (:Z) . (7.13) 

If we substitute this into eqn 7.12 and integrate from z = 0 to z = d we gel 
the following expression for the energy: 

2
. {d 2 [(KITC ) (EaE2d)]10 Ftolal dz = 8n 4d - ~ . (7.14) 

So any small distortion of the director will lead to a lowering of the free energy 
if the field exceeds a critical value Ecrit. which is given by 

2TC ;;I<;.
(7.15)ECrit=dY~' 
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E=O E> Ecrit Fig. 7.13 The twisted nematic display. 

for values of applied field less than Ecrit the director remains parallel to the 
cell walls right through the cell, while for values greater than Ecrit the director 
distorts in the centre of the cell to align with the field. 

Very similar calculations can be made for the case of a liquid crystal in a 
magnetic field. In fact, observations of magnetic Frederiks transitions provide 
the best way experimentally to determine the elastic constants for twist, splay, 
and bend. 

Frederiks transitions, in slightly more complicated geometries, form the basis 
for liquid crystal displays. For example, in a twisted nematic display, a nematic 
liquid crystal is confined between two plates, typically around 10 /.Lm apart. 
The plates are treated to impose a parallel alignment on the liquid crystal, but 
the alignment directions of the two plates are perpendicular to each other. This 
forces the director to twist round by 90° between the top and bottom plate. Now 
if a field is applied perpendicular to the plates, above the Frederiks transition 
the director towards the centre of the plates will swing into alignment with the 
applied field (Fig. 7.13). 

The critical field for the Frederiks transition in the twisted nematic geome­
try can be calculated by a linear stability argument similar to the one given 
above; the situation is slightly more complicated because bend and twist 
distortions are involved as well as splay distortions. The result is that the 
critical field is given by 

(7.16) 

To use the twisted nematic cell as a display device, the cell is sandwiched 
between crossed polarisers. In the voltage-off state, the polarisation state 
of incoming light is twisted round through 90° as it follows the changing 
orientation of the director through the cell. When a field substantially greater 
than the critical field is applied, the director through most of the cell is 
perpendicular to the plates and has no effect on the polarisation state of the 
light; the polarised light is blocked by the polariser as it leaves the cell, which 
appears dark. 
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7.7 Polymer liquid crystals 

7.7.1 Rigid polymers 

Polymers form an important subclass of liquid-crystal-forming materials. 
Polymer liquid crystal phases are important in the processing of advanced 
high-modulus engineering materials, like Kevlar, and they may also occur in 
nature in solutions of some biopolymers. 

We can distinguish between two classes of liquid crystal polymer: 

thermotropic liquid crystal polymers, in which the transition from an isotropk 
to a liquid crystalline phase is driven by changes in temperature; 

lyotropic liquid crystal polymers, in which a liquid crystal phase is fonned 
in solution, with a transition from isotropic to liquid crystalline phase 
driven by a change in concentration. 

A polymer will have a propensity to form a liquid crystalline phase if i~ 

backbone is relatively rigid; liquid crystal phases are also possible for polymers 
with a flexible backbone with rigid units attached, but these side-chain liqui~ 

crystals are rather different. Such rigidity in the main chain can be achieved in 
one of two ways: 

1.	 The polymer itself is made up of mesogenic monomer units which allow 
for restricted rotation between the units, resulting in a tendency to a rigid 
or semi-rigid rod conformation. 

2.	 The polymer has a flexible backbone, but strong interactions between 
nearby monomers cause a transition from a random coil state to a rigid 
helix. 

As an example of a polymer in the first category, Fig. 7.14 shows the chemical 
structure of an aromatic polyamide, poly(p-phenyleneterephthalamide) or 
PPTA, which forms a liquid crystal phase in solution. If fibres are spun from 
this liquid crystalline solution, they will have a high degree of molecular 
alignment resulting in very good mechanical properties; this material in fad 
forms the basis for the commercial material Kevlar (du Pont), which is very 
stiff and strong. 

7.7.2 Helix-coil transitions 

The classic case ofa polymer which adopts a helical rigid rod structure stabilised 
by strong interactions between nearby monomers is provided by the a-hel~ 

structure of polypeptides. This is illustrated in Fig. 7.15; a hydrogen bond~ 

formed between the C=O group on the ith monomer and the N-H group on til 
(i + 4)th monomer. 

tg-()g-~-()~jFig. 7.14 The chemical structure of poly 
(p-phenyleneterephthalamide), or PPTA, a 
typical semi-rigid polymer.	 n 
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What drives the formation of such a helical structure is the lowering of free 
energy that results from the formation of the hydrogen bonds. What opposes 
it is the loss of entropy that is a result of the loss of flexibility of the chain. 
Thus we would expect a transition to take place as the temperature is increased, 
with the lower energy helix conformation favoured at low temperatures, and 
the higher entropy coil conformation favoured at higher temperatures. What is 
the nature of this transition? 

We can investigate this by making a simple but effective model, illustrated 
in Fig. 7.16. We imagine the chain to be made up of units that can be either in 
the helix state or in the coil state. For each specified unit, there is a certain free 
energy change b.Fhc when it changes from a coil to a helix state; this represents 
the energy of the hydrogen bond which stabilises the helix. However, there is 
also a free energy b. Fg associated with the junction between helix and coil 
segments. It is this factor that expresses the cooperativity of the transition. If 
one hydrogen bond has been formed, it makes it easier to form neighbouring 
hydrogen bonds. 

To find out the nature of the transition, we need to determine the free energy 
change on going from an all-coil state to a state with a certain number of helix 
segments h, and a certain number of junctions between helix and coil regions 
2g. In addition to the free energy change associated with the total number of 
helices and the total number ofjunctions there is an entropy associated with the 
total number of different ways of arranging a chain with N units so that it has 
hhelix segments and 2g junctions. 
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Fig. 7.15 The formation of an a-helix in 
a polypeptide. (a) The chemical structure 
of a polypeptide, illustrating the hydrogen 
bond that can be formed between nearby 
monomers. (b) The a-helix that results when 
hydrogen bonds are formed between the ith 
and (i + 3)th monomer units. 

Fig.7.16 A simple model for the helix-coil 
transition. We imagine our chain to be made 
up of units that are in either the helix state (H) 
or the coil state (e). The free energy change 
when a single specified coil unit transforms to 
a helix state is D. Fhc; in addition there is a free 
energy associated with each junction between 
helix and coil segments D.Fg . 
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How can we find this entropy? The 2g junctions define a set of g boxes in 
which we have to put the helix segments, with at least one segment going in 
each box, and another set of g boxes into which the coil segments must be put 
So for the helix segments, we define as Qh the number of ways there are of 
arranging h objects in g boxes, each of which must contain at least one object 
This is given by 

h! 
Qh=-- . (7.17)

g!(h - g)! 

Similarly, for the coil segments there are Qc ways of arranging the N - h 
coil segments in the g boxes, where 

(N - h)!
Qc=------ (7.18)

g!(N - h - g)! 

The total number of arrangements is Qc x Qh, and the entropy associated 
with this number of arrangements is 

fj"Sc(h, g, N) = kBln(QcQh). (7.19) 

We can simplify this using Stirling's approximation for the factorials (lnx! ~ 

x Inx - x), to find 

fj"Sc(h, g, N)/kB = h Inh + (N - h)ln(N - h) - 2g Ing 

- (h - g)ln(h - g) 

- (N - h - g)ln(N - h - g). (7.20) 

Now we can write down the free energy relative to the coil state in tennsof 
hand g, F(h, g); 

F(h, g) = hfj"Fhc + 2gfj"Fg - T fj"Sc(h, g, N). (7.21) 

We need to minimise F(h, g) with respect to both hand g. Taking partial 
derivatives with respect to each variable and setting these equal to zero gives 
us two equations: 

c(h-g) =exp(_fj"FhC) =5, (7.22)
h(c - g) kBT 

g2 = exp (_ 2fj"Fg ) = a. (7.23)
kBT 

Here we have written the number of coil segments N - h = c, and we 
have introduced the two parameters a and 5. The parameter 5 expresses the 
preference qf a given segment for the helix state over the coil state; as the 
temperature changes 5 may change from a value less than unity, in which 
the coil state is energetically preferred, to a value greater than unity, in which 
the helix state is preferred. The parameter a is a measure of the cooperativity 
of the transition. For a = I there is no cooperativity; the conformational state 
of one segment is independent of its neighbour. As the energy associated with 
a junction between helical and coil regions increases, a takes a value less than 
unity, with a value of a = 0 implying that junctions between helical regions 
and coil regions are absolutely forbidden. 
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Fig. 7.17 The helix--eoil transition as predicted by eqn 7.24. The coil state is favoured for s < I, 
and the helix state for s > 1. For a system with no cooperativity (CT = I), the transition is very broad, 
but for realistic values of the cooperativity parameter CT '" 10-4 , the transition is rather sharp. 

Writing fh = h / N for the fraction of segments in the coil state, we can 
eliminate g from the simultaneous equations 7.23 to find 

1 (s - 1) 
fh = - + ~==:;;=== (7.24) 

2 2J(s - 1)2 +4sa 

In Fig. 7.17 we plot eqn 7.24 as a function of s for various values of a . In all 
cases we see that for s < 1, for which the coil state is energetically favourable, 
the molecule is predominantly in the coil state, while for s > 1 the molecular 
is predominantly helical. But the nature of the transition between the coil and 
helix states depends on the value of a. For large values of a, the transition is 
very broad. For a = 1, which corresponds to a value of !:i.fg = 0, eqn 7.24 
reduces to fh = s/ (l +s). In this limit the probability of a segment being in the 
helix state is given by a simple Boltzmann factor; because there is no energy 
penalty for junctions between coil and helix segments each segment behaves 
independently. As the degree of cooperativity becomes larger, corresponding to 
smaller values of a, the transition becomes much sharper. 

The sharpness of the transition (values of a are found to be in the range 
10-4_10-3) makes it tempting to think of the helix-eoi1 transition as being 
analogous to melting. However, there is an important fundamental difference. 
The helix-eoil transition is not a true phase transition, as the width of the 
transition does not tend to zero as the total size of the system becomes infinite, 
but instead remains finite. This is a manifestation of a general theorem in 
statistical physics that states that true phase transitions do not occur in one­
dimensional systems in which the interactions are of short range. For any finite 
value of s there will always be a finite fraction of coil sections, so a long chain 
will always have some shorter coil sections coexisting with longer sections of 
helix. Fully rigid rods will only be obtained for relatively short chains. 
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7.7.3 The isotropidnematic transition for ideal hard rods 

An important idealisation of a lyotropic liquid crystal system consists of a 
solution of hard rods, the theory of which was developed by Dnsager. This is 

the anisotropic analogue of the hard-sphere system we discussed in Chapter 4, 
where a transition to an ordered crystalline phase was driven by an effective 
repulsion of entropic origin arising from the effect of excluded volume. The 
energy of interaction between hard rods is zero except when they overlap 
in space, in which case it is infinite. This means that there is a reduction in 
translational entropy, as some space is not available to be explored by a given 
rod because it is already occupied by another rod. In the hard-rod system, we 
find that less volume is excluded if the rods tend to align, and it is this reduction 
ofthe excluded volume effect by alignment which drives a phase transition from 
an isotropic state to a nematic liquid crystalline state as a function of increasing 
concentration of the rods. 

Let us recall some basic results about excluded volume from Chapter 4. In 
a perfect gas one can write the entropy per atom Sideal of N atoms in a volume 
V as 

Sideal = ka In (a ~ )	 (7.25) 

where a is a constant. If the gas atoms have a finite volume b this reduces the 
volume accessible to any given atom from V to V - Nb, and the entropy is 
modified to 

S = ka In ( a (V ~N b) ) 

=	 Sideal + ka In (1 _ b:) 
= Sideal - ka (~) b,	 (7.26) 

where we have expanded the logarithm assuming that the volume fraction of 
atoms is low. The corresponding free energy is 

F = Fideal + ka T ( ~) b 

= Fo + kaT logc + kaTcb, (7.27) 

where the concentration c = N / V. 
In the hard-rod system another factor enters: the degree of alignment of the 

rods. If we describe this by an orientation function f (B), we need to introduce 
two new factors to the expression for the free energy: 

1.	 As a net orientation is introduced, there is a loss of orientational entropy 
tJ..S, which is given by eqn 7.3 as tJ..S = -ka f feB) In[4Jl'f(B)] dQ. 

2. The excluded volume b becomes a function of the degree of orientation; 
as the degree of alignment increases the excluded volume decreases. 

To quantify the second point, consider two rods, each of length L and 
diameter D, that make an angle y with each other. The excluded volume 
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is2L2DlsinYI, as shown in Fig. 7.18. If the orientation of all the rods is 
completely random, then the average value of Isin Y I can be shown to be rr /4. 
However, as the rods become aligned then the average value of Isin Y I starts to 
decrease from this value. If we write this average value as p[f (8)] = (I sin Y I) 
~en in terms of the orientation function f (8) we have 

p[f(8)] = (Isiny!) = f f f(8)fC8') sinydQdQ' .. (7.28) 

Thus for any given distribution function one can calculate p[f(8)) in terms of 
Ibis rather messy multiple integral. 

Taking together the term for the loss of orientational entropy and the exclu­
ded volume, we find for the free energy 

F=Fa+kBT(IOgCC)+ f f(8)ln[4rr f (8)]dQ+L 2 DCP[fC8))). 

(7.29) 

It is convenient to rewrite this in terms of the volume fraction of the rods 
¢= c rr L D2 /4; after absorbing more constant terms in Fa this gives us 

F= F~ + kBT [lOg (~ ¢ ) + f f(8) In[4rrf(8)] dQ + ~ ~ ¢P[f(8)]] . 

(7.30) 

From this we can see that the phase diagram must be a function only of the 
combination ¢L/D, the product of the volume fraction and the aspect ratio 
LjD of the rods. 

This expression is a functional, a function of a function, so to find the 
function f (8) that minimises it soon leads us into rather difficult mathematics. l 

We can, however, get a good approximate solution by assuming a particular 
trial functional form for the distribution function, and then minimising the 
free energy with respect to a parameter in our guessed distribution function 
(this amounts in mathematical terms to a variational method of approximate 
solution). 

Aconvenient, properly normalised, trial function is 

f(8) = ~ cosh(~ cos(8)) . (7.31)
4rr smha 

Here the parameter a controls the degree of orientation: for a = 0 the distri­
bution is uniform, and as a increases the function develops sharp peaks around 
the directions 8 = 0 and 8 = rr, giving shapes similar to those shown in 
Fig. 7.4. Once again, we can characterise the degree of order in terms of the 
order parameter S = Ji (3cos2 8 - 1) f(8)dQ. 

Using this function we can now use eqn 7.28 to evaluate the average value 
of Isin y I as a function of the degree of orientation of the rods. This is shown 
in Fig. 7.19; for completely randomly oriented rods it takes the value rr /4, and 
then as the rods get more aligned its value falls. We can similarly calculate the 
loss of orientational entropy as a function of the order parameter, and thus we 
can plot the contributions to the free energy. These are sketched in Fig. 7.20. 

This plot summarises the physics of the hard-rod system. As the degree of 
ordering increases, there is an increase in free energy associated with the loss 
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Fig.7.18 Excluded volume in the interaction 
of two rods, each of length L and diameter D, 
with an angle V between them. The presence 
of one rod means that a volume DL2

1 sin vi 
is inaccessible to the other rod. 

IIn fact it leads to an integral equation that 
needs to be solved numerically. 
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Fig. 7.19 The average value of the magnitude 
of the angle between two rods as a function of 
their degree of orientation. 

Fig. 7.20 Contributions to the free energy 
of a solution of hard rods as a function of 
their degree oforientation, as measured by the 
order parameter S. The relative importance of 
the two contributions depends on the product 
of the volume fraction of the rods and their 
aspect ratio. 
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of orientational entropy, but there is a decrease in the free energy arising from 
excluded volume interactions. The relative importance ofthe two terms depends 
on the quantity ¢DI L, the product of the volume fraction of the rods and their 
aspect ratio: as the volume fraction of the rods gets higher, or as the rods become 
more elongat~d, the excluded volume term becomes more important, and this 
can drive a phase transition into the nematic state. 

This is illustrated in Fig. 7.21. For the lower value of the product ¢L/D, 
the free minimum energy state clearly occurs for S = 0; the equilibrium phase 
is an isotropic solution. But as this ratio is increased, a minimum appears in 
the free energy curve at a non-zero value of the order parameter S; a nematic 
phase has appeared. Analysis of the free energy curves reveals that there is a 
first-order phase transition from the isotropic to the nematic state. For values 
of ¢LID < 3.34, the solution is isotropic. For values of ¢LID < 4.49, the 
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solution is nematic, while for values of ¢LjD intermediate between these two 
limits, the solution separates into coexisting nematic and isotropic phases, with 
the order parameter in the nematic phase taking the value S = 0.84. The 
resulting phase diagram is shown as a function of ¢ and L j D in Fig. 7.22. One 
should note from this diagram that in order to obtain a liquid crystalline phase 
at a low volume fraction it is necessary to have rather a large aspect ratio. 

Fig. 7.21 Thefree energy ofa solution ofhard 
rods as a function of their degree of orien­
tation. as measured by the order parameter 
S, for two values of the product of volume 
fraction and aspect ratio. For IjJL/ D = 3.3, 
the lowest energy state is isotropic, but for the 
higher value of IjJL/ D = 4.5 the equilibrium 
state has nematic order. 

Fig. 7.22 The phase diagram of a solution of 
hard rods as a function of their volume fraction 
IjJ and aspect ratio L/ D. 
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7.7.4 Transitions in real lyotropic systems 

Real polymer systems of the kind that form lyotropic phases differ from the 
ideal hard-rod systems discussed above in two ways: 

1.	 Additional interactions, either attractive or repulsive, exist between the 
rods over and above the simple excluded volume interaction. 

2.	 The rods may not be completely stiff. 

These two factors can make the observed phase diagrams in real lyotropic 
systems considerably richer than those predicted from the theory of ideal 
hard rods. 

The effect of rod-rod interactions is perhaps the most important. One can 
represent the effect of these interactions by an interaction parameter X of the 
kind introduced in Chapter 3; this parameter represents in a dimensionless way 
the difference in energy between rod-rod, solvent-solvent, and rod-solvent 
interactions. Negative values of X correspond to net repulsive interactions 
between the rods, while positive values of X correspond to net attractive 
interactions. If they are strong enough, these attractive interactions can lead 
to liquid-liquid phase separation. 

The resulting phase diagram can be calculated by different theoretical 
approaches which are beyond the scope of this treatment. We can, however, 
understand this phase diagram at a qualitative level. Figure 7.23 illustrates 
a phase diagram, calculated using a lattice theory due to Flory (see de 
Gennes and Prost 1993), for rods with an aspect ratio of 100. For repulsive 
interactions there is a narrow 'chimney' of two-phase coexistence; in this 
regime the behaviour is dominated by the excluded volume interaction. 
For attractive interactions (which normally become more important as the 
temperature is lowered) there is a region of what is essentially liquid-liquid 
phase separation, with the high volume fraction phase being nematic. There is 
a very narrow window of interaction parameters in which two nematic phases 
at different volume fractions coexist. 

As the aspect ratio of the rods decreases, we would expect on the basis of our 
discussion of ideal hard rods that the volume fractions defining the two-phase 
chimney increase. 

The other important complication in practical systems arises from the fact 
that physical systems are not perfectly stiff. Such chains are often referred to 
as semi-Flexible. By this we mean that the statistical step length introduced in 
the discussion of random walks in Chapter 5 is significantly larger than the 
diameter of the chain, but still considerably less than the total length of the 
chain. In this case the phase diagrams are qualitatively similar to that shown 
in Fig. 7.22, but the volume fractions required to enter the nematic phase are 
considerably higher than in the rigid rod case and the degree of ordering in the 
nematic phase is somewhat less. 

7.7.5 Thermotropic liquid crystal phases 

Although a rigid or semi-rigid polymer such as PPTA (Fig. 7.14) forms liquid 
crystal phases in solution, it is difficult to obtain a liquid crystalline melt of 
the pure polymer. The melting point of the crystalline material is too high, 
and if heated the material will thermally decompose before the melting point is 
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reached. To obtain a polymer that can be processed in the liquid crystalline melt 
state, one needs to be able to reduce the transition temperature from the crystal 
to the liquid crystal to an experimentally accessible value. Such materials are 
known as thermotropic liquid crystalline polymers. Among the strategies that 
can be employed to achieve this are: 

•	 Inclusion of flexible units in the backbone. If the rigid units are separated 
by, for example, a -(CH2)n- group, then the transition temperature 
from the crystal to liquid crystal phase is decreased as a function of 
increasing n. 

•	 Use of a random copolymer. If two rigid units are copolymerised in 
a random way, the quenched disorder along the chain backbone will 
suppress the formation of a crystalline phase, while still permitting the 
formation of a liquid crystalline phase. 

• Attachment of large, flexible side groups to the backbone. The melting 
point of a rigid polymer can be effectively reduced by attaching flexible 
side chains-typically aliphatic groups-to the backbone; the side chains 
can be thought of as acting like chemically attached solvent molecules. 
These materials are sometimes referred to as hairy-rod polymers. This 
approach also has the useful property that one can modify the solubility 
of such polymers in different solvents by modifying the chemical nature 
of the side groups. For an example of such a material, see Fig. 7.24. 

Thermotropic liquid crystalline polymers have been explored commercially 
as high-specification structural materials; if they can be processed in the liquid 
crystalline state the high degree of molecular alignment leads to extremely 
high strength and stiffness. Another more recent application occurs in the 
field of semiconducting polymers. Such polymers have a conjugated backbone, 
which renders them insoluble and very difficult to process unless side groups 
can be attached, as in the example shown in Fig. 7.24. If, as a result of the 
attachment of such side groups, the materials show liquid crystalline phase 
behaviour then one can hope to process them in a way which maximises the 
degree of molecular order in the final electronic or optoelectronic device, and 
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Fig. 7.23 The phase diagram of a solution of 
rigid rod-like polymers with an aspect ratio 
LI D = 100 as a function of their volume 
fraction cf> and interaction parameter X, as 
calculated from Flory's theory. Note that we 
would normally expect X to decrease as the 
temperature is increased, so the correspond­
ing diagram as a function of temperature 
would look inverted. 
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Fig. 7.24 The chemical structure of a polyflu­
orene, a class of conjugated polymers with JH
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C 

(CH2)'Z 
a rigid rod backbone, which exhibits ther· 
motropic liquid crystalline behaviour when CH3 CH3 
aliphatic side groups of moderate length are 
attached (typically m = 7). n 

thus optimises the device parameters such as the charge carrier mobility or the 
degree of polarisation of emission. 

Further reading 

The theory of small-molecule liquid crystals is covered in de Gennes and 
Prost (1993); there is also much useful material in Chaikin and Lubensky 
(1995). Chandrasekhar (1992) is a more general monograph, covering theory, 
experiment, and the fundamentals of device applications. Polymer liquid 
crystals are described in Donald and Windle (1992). 

Exercises 
(7.1) In a simple model of a nematic/isotropic phase transition, 

the free energy change fi F on going from the isotropic 
state to an ordered state with an order parameter S can be 
written as a function of temperature T as 

I 
fiF = 2a(T - T*)S2 - wS3 + uS4 

, 

where a, u, w, and T* are positive constants. 

a)	 Sketch curves of fiF as a function of S for various 
values of temperature T for the following param­
eters: a = 0.0033; T* = 300; W = 0; U = I. What 
is the nature of the phase transition at T =-T*? 

b)	 Sketch curves of fi F as a function of S for tem­
peratures T in the range 300-500 for the following 
parameters: a = 0.0033; T* = 300; w = I; u = 
I. What is the nature of the phase transition now? 

c)	 Show that for this model the nematic/isotropic 
transition occurs at a temperature Tc given by 

2w
Tc = T* +-. 

2au 

d)	 Derive an expression for the order parameter at the 
transition Sc. 

(7.2)	 You are asked to design a twisted nematic display, using 
a nematic liquid crystal whose elastic constants are given 
by Kl = 5.3 x 10- 12 N, K2 = 2.2 x 1O- 12 N, and 
K3 = 7.45 x 10- 12 N. If the dielectric anisotropy 
lOa = O.7EO, what is the switching voltage? 

(7.3)	 A biopolymer is observed to change from a helix to a coil 
state over a 5 K temperature interval centred on 343 K. 

a) Using eqn 7.24, show that the width of the helix­
coil transition in terms of the parameter s may be 
characterised by fis = 40' 1/2. 

b) Assuming that s is a linear function of temperature 
close to the midpoint of the transition, estimate the 
free energy, in units of kB T, associated with ajunc­
tion between helical and coil sections, fi Fg / kB T. 

c)	 How would you expect the width of the transition 
as the length of the biopolymer is increased? What 
is the significance of this result? 


